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This paper explores the use of low-dimensional parametric representations of neutron-star equa-
tions of state that include discontinuities caused by phase transitions. The accuracies of optimal
piecewise-analytic and spectral representations are evaluated for equations of state having first- or
second-order phase transitions with a wide range of discontinuity sizes. These results suggest that
the piecewise-analytic representations of these non-smooth equations of state are convergent, while
the spectral representations are not. Nevertheless, the lower-order (2 ≤ Nparms ≤ 7) spectral repre-
sentations are found to be more accurate than the piecewise-analytic representations with the same
number of parameters.

I. INTRODUCTION

The equation of state of the material in the cores of
neutron stars is not well known at this time. The density
of this material far exceeds the limits of current labora-
tory experiments, and there is at present no universally
accepted theoretical model of this material. Astrophysi-
cal observations of neutron stars can in principle be used
to determine the neutron-star equation of state [1]. How-
ever, the quality and quantity of those observations are
presently quite limited.

Parametric representations of the neutron-star equa-
tion of state have been introduced as a way to analyze the
results of the relevant astrophysical observations. The
parameters in these equations of state are adjusted to
provide best-fit models of the observational data, thus
producing approximate representations of the physical
equation of state. Since the quality and quantity of the
relevant astrophysical observations are still quite limited,
parametric representations that provide good accuracy
using only a small number of parameters are needed.

Two types of parametric representations of the equa-
tion of state have been introduced for this purpose.
Piecewise-analytic representations, first introduced in
Ref. [2], divide the range of densities into discrete ranges
with parameter-dependent analytic expressions repre-
senting the equation of state within each range. An-
other type of parametric representation, first introduced
in Ref. [3], is constructed from a generating function ex-
pressed as a linear combination of fixed basis functions,
e.g. polynomial or trigonometric functions. The param-
eters in these “spectral” representations are the coeffi-
cients that multiply the basis functions in the sum that
determines the generating function for the equation of
state.

The accuracies of both the piecewise-analytic and the
spectral representations have been evaluated using a di-
verse collection of theoretical neutron-star equation of
state models [2–5]. Those tests showed that both types
of representation are convergent in the sense that their
accuracies increased as the number of parameters in the
representation increased. Those tests also showed that

reasonably good accuracies (at the few percent level)
could be achieved with representations having a fairly
small number of parameters. Consequently both the
piecewise-analytic and the spectral representations have
been widely used to analyze the presently available ob-
servational data, with Refs. [2] and [3] having received
hundreds of citations in the literature.

Previous tests of the accuracy of these parametric rep-
resentations used a collection of mostly discontinuity-
free theoretical equation of state models. The physical
neutron-star equation of state may (or may not) include
discontinuities caused by phase transitions. The purpose
of this paper is to systematically evaluate the accuracy
of the piecewise-analytic and the spectral representations
when used to represent non-smooth neutron-star equa-
tions of state with phase transitions. A sequence of ex-
emplar equations of state are constructed in Appendix A
for this study with phase transitions having a range of
sizes. Those exemplar equations of state are then used
to test the accuracy of both the piecewise-analytic and
the spectral representations.

The methods used in this study to construct optimal
parametric equation of state fits are described in Sec. II.
These methods are then used to construct optimal fits to
each exemplar equation of state using both the piecewise-
analytic and the spectral representations. The accuracies
of the resulting optimal fits are evaluated using the L2

norm of the difference between the exemplar equation of
state and its parametric representation. These results
illustrate how the accuracies of the parametric represen-
tations depend on the type of representation (piecewise
analytic or spectral), the size and type (first- or second-
order) of the phase-transition discontinuities, and the or-
ders of the parametric representations.

Section III discusses the implications of the results
found here. If and when more accuracy is needed to
model future improvements in the quality and quantity
of observational data, a split domain method for con-
structing more accurate representations of non-smooth
equations of state with phase transitions is proposed.
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II. OPTIMAL PARAMETRIC FITS

This section describes the method used in this study to
test the accuracy of optimal piecewise-analytic and spec-
tral representations of neutron-star equations of state
with phase transitions. The exemplar equations of state
with phase transitions used to perform these tests were
constructed from the relatively smooth GM1L equation
of state, which is based on a mean-field representation
of the interactions between nucleons [6]. Discontinuities
representing first- or second-order phase transitions were
inserted into a tabulated representation of GM1L at a
point several times nuclear density where the energy den-
sity has the value ǫT = 8 × 1014 g/cm3. These discon-
tinuities were inserted with a range of sizes specified by
a parameter k, which determines the size of the discon-
tinuity as a fraction of the maximum physically relevant
discontinuity (see Appendix A). The family of exemplar
equations of state used in this study range from the orig-
inal smooth GM1L equation of state with k = 0 to equa-
tions of state with the maximum discontinuity of each
type with k = 100. Details of the construction of these
exemplar equations of state are given in Appendix A.
Figures 1 and 2 illustrate members of these exemplar
equation of state families, with first- and second-order
phase transitions respectively, in the neighborhood of the
phase transition point.

The particular parametric equation of state represen-
tations used in this study [3, 5] are described in Ap-
pendix B. These parametric representations are causal in
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FIG. 1: Several exemplar equations of state with first-order
phase transitions are illustrated in a neighborhood of the
phase transition point. The curves shown here include the
original GM1L equation of state, k = 0, and several equa-
tions of state with larger density offsets, 0 < k ≤ 100. The
k = 100 curve has the maximum density offset allowed in
stable (and therefore observable) neutron-stars.

the sense that the sound speeds are less than the speed
of light for every choice of the parameters. The rep-
resentations used in this study express the energy den-
sity ǫ(h, υa) and the pressure p(h, υa) as functions of the
enthalpy h of the fluid and a set of parameters υa for
1 ≤ a ≤ Nparms. This type of representation is most
useful when using the enthalpy-based form of the rela-
tivistic stellar structure equations [1]. This form of the
equations allows numerical determinations of the masses
and radii more accurately and more efficiently than the
standard pressure-based Oppenheimer-Volkoff [7] form.
The families of exemplar equations of state with phase
transitions described in Appendix A were produced as
enthalpy-based tables, {ǫi, pi, hi} for 0 ≤ i ≤ Ntable, to
facilitate comparisons with the enthalpy-based paramet-
ric representations.
The next step is to find the values of the parameters υa

in the equation of state, ǫ(h, υa), that best approximates
one of the exemplar equations of state. The optimal pa-
rameter values υa are found in this study by minimizing
the function χ(υa) that measures the average difference
between the tabulated values of the exemplar equation
of state, ǫi(hi), and the corresponding values from the
parametric equation of state, ǫ(hi, υa):

χ2(υa) =
1

Ntable

Ntable
∑

i=0

[

log

(

ǫ(hi, υa)

ǫi(hi)

)]2

. (1)

The error function χ2(υa) is non-negative, and therefore
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FIG. 2: Several exemplar equations of state with second-
order phase transitions are illustrated in a neighborhood of
the phase transition point. The curves shown here include
several equations of state with density derivative offsets in the
range 0 ≤ k ≤ 100. The k = 0 curve represents the original
GM1L equation of state, and the k = 100 curve has the largest
physically possible fluid-velocity discontinuity, with the fluid
velocity equal to the speed of light on the high density portion
of this curve.
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FIG. 3: Average errors χ(Nparms) for the piecewise-analytic
fits as a function of Nparms for a family of equations of state
with first-order phase transitions of various sizes, 0 ≤ k ≤ 100.
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FIG. 4: Average errors χ(Nparms) for the piecewise-analytic
fits as a function of Nparms for a family of equations of state
with second-order phase transitions of various sizes, 0 ≤ k ≤
100.

has a minimum for some υa. The minimization of χ(υa)
is carried out numerically in this study using an algo-
rithm based on the Levenberg-Marquardt method [8].
The equation of state, ǫ(h, υa) and p(h, υa), produced
by this minimization process is the optimal parametric
fit to this equation of state.
Model equations of state created with different num-

bers of parameters, Nparms, produce different error min-
ima, χ2(υa, Nparms). Those with larger Nparms gener-
ally produce smaller errors, and therefore provide bet-
ter approximations to the original tabulated equation of
state. The minimum values of χ(Nparms) for the causal
piecewise-analytic representations of the exemplar equa-
tions of state with first-order phase transitions are shown
as functions of Nparms in Fig. 3 for a range of disconti-
nuity sizes, 0 ≤ k ≤ 100. Figure 4 shows the analogous
results for the exemplar equations of state with second-
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FIG. 5: Average errors χ for the optimal spectral fits as a
function of Nparms for a sequence of equations of state with
first-order phase transitions of various sizes, 0 ≤ k ≤ 100.
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FIG. 6: Average errors χ for the optimal spectral fits as a
function of Nparms for a sequence of equations of state with
second-order phase transitions of various sizes, 0 ≤ k ≤ 100.

order phase transitions. The results for the causal spec-
tral representations of the exemplar equations of state
with first- or second-order phase transitions are shown in
Figs. 5 and 6 respectively.

III. DISCUSSION

The results in Figs. 3 and 4 show that the piecewise-
analytic parametric fits to the exemplar equations of
state are convergent, in the sense that the average errors
χ(Nparms) decrease monotonically as the number of pa-
rameters Nparms increases. These results also show that
the accuracies of the piecewise-analytic representations
do not depend strongly on the size of the discontinuities.
The piecewise-analytic representations therefore provide
a robust way to represent equations of state with discon-
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FIG. 7: Comparing modeling errors, χ(Nparms), for the opti-
mal causal piecewise-analytic and the causal spectral fits to
the exemplar neutron-star equations of state with first-order
phase transitions.

tinuities from first- or second-order phase transitions.
The results in Figs. 5 and 6 for the spectral representa-

tions are more nuanced. The modeling errors χ(Nparms)
decrease rapidly as Nparms increases to Nparms = 8 for
equations of state with small discontinuities. However for
larger values, Nparms > 8, and for equations of state with
larger discontinuities, χ(Nparms) becomes more or less
constant. These results show that the particular spec-
tral representation used in this study does not provide
convergent representations of equations of state with dis-
continuities caused by phase transitions.
Nevertheless, the modeling errors χ(Nparms) for the

low-order, 2 ≤ Nparms ≤ 7, spectral representations
are smaller than those of the corresponding piecewise-
analytic representations for every exemplar equation of
state included in this study. Figures 7 and 8 illustrate
the relative accuracies of the two types of parametric
representation for the equations of state with first- or
second-order phase transitions respectively. While these
spectral representations are not convergent, these re-
sults show that they are still the mose accurate choice
when using low-order parametric fits. The errors in the
Nparms = 3 spectral fits, for example, are fairly small,
0.012 ≤ χ ≤ 0.072, for all the phase transitions stud-
ied here. Until the quality and quantity of observational
data are improved to allow more accurate determinations
of the equation of state, the low-order spectral represen-
tations are likely to be the best choice.
It is not clear why the spectral representations fail

to converge for equations of states with discontinuities.
The basis functions used in the particular spectral repre-
sentation used here are simple powers of log (h/h0), see
Eq. (B14). This spectral expansion is therefore similar
in form to a Taylor expansion of the velocity function.
The radius of convergence of the Taylor expansion of this
function would not extend into the high density region
beyond the discontinuity caused by a phase transition.
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FIG. 8: Comparing modeling errors, χ(Nparms), for the op-
timal causal piecewise-analytic and the causal spectral fits
to the exemplar neutron-star equations of state with second-
order phase transitions.

It is possible that the spectral expansions using these
power-law spectral basis functions fail to converge for a
similar reason. If this is the problem, then changing ba-
sis functions to Chebyshev polynomials or Fourier basis
functions whose domains span the phase transition point
would likely improve the convergence properties of the
spectral representations.
In cases where a strong first-order phase transition

is present, better accuracy and numerical convergence
could also be achieved by dividing the equation of state
into a low-density domain with pressures and energy den-
sities below the phase transition point, and a second high-
density domain with pressures and densities above that
point. In the low-density domain, h0 ≤ h ≤ hT , the
spectral expansion defined in Eqs. (B4)–(B13) could be
used. In the high-density domain a separate but similar
spectral expansion could be used:

p(h) = pT + (ǭT c
2 + pT )

∫ h

hT

µ̄(h′) dh′, (2)

ǫ(h) = −
p(h)

c2
+
(

ǭT +
pT
c2

)

µ̄(h), (3)

where pT = p(hT ) and ǭT represent the point on the
equation of state curve just above the phase transition
point. The quantity µ̄(h) used in these expressions is
given by

µ̄(h) = exp

{

∫ h

hT

[

2 + Ῡ(h′)
]

dh′

}

, (4)

while the velocity function Ῡ(h) used in the high-density
domain is given by,

Ῡ(h, υa) = exp







N̄parms
∑

a=1

ῡaΦa(h)







, (5)
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for some suitable choice of basis functions Φa(h).
The single domain spectral expansions considered in

this study are defined by the values of the Nparms spec-
tral parameters υa. The two-domain spectral expansions
are defined by the values of the original Nparms spectral
parameters υa, plus the N̄parms spectral parameters ῡa,
plus two additional parameters hT and ǭT that deter-
mine where the phase transition is located and the size
of the energy-density discontinuity at that point. Thus
the number of parameters needed to specify the equa-
tion of state using this two-domain approach grows from
Nparms to Nparms + N̄parms + 2. The cost of going to a
two-domain spectral representation could only be justi-
fied if sufficient accuracy could not be achieved using a
single-domain representation with the same total number
of parameters.

Appendix A: Exemplar Equations of State

The exemplar equations of state used in this study were
constructed by introducing discontinuities into the rela-
tively smooth GM1L equation of state, which is based on
a mean-field representation of the interactions between
nucleons [6]. The basic representation of GM1L used
here is a table of energy density and pressure points:
{ǫi, pi} for 0 ≤ i ≤ Ntable. The primary goal of this
study is to test the accuracy of parametric represen-
tations of equations of state with phase transitions in
the nuclear-density range. Consequently only the high-
density portion of the GM1L equation of state table is
used here, beginning at the table entry, {ǫ0, p0}, where
ǫ0 = 5.08587 × 1013 g/cm3 and p0 = 1.20788 × 1032

erg/cm3.
This study uses enthalpy-based representations of the

equation of state, so the basic pressure-based GM1L ta-
ble, {ǫi, pi}, must be converted to an enthalpy-based ta-
ble: {ǫi, pi, hi}. The enthalpy of a relativistic fluid is
defined by,

h(p) = h0 +

∫ p′

p0

dp′

ǫ(p′)c2 + p′
. (A1)

In order to evaluate this integral for the tabulated GM1L
equation of state, an interpolation formula must be used
to determine the values of ǫ(p) between table entries. The
commonly used pseudo-polytropic interpolation,

p = pi

(

ǫ

ǫi

)Γi

, (A2)

is used here to define this equation of state for energy
densities, ǫi ≤ ǫ < ǫi+1, in the intervals between table
entries. The constants Γi in this expression are defined
by

Γi =
log(pi+1/pi)

log(ǫi+1/ǫi)
. (A3)

The low density value of h0 = p(h0) used in this study
is determined by evaluating the enthalpy integral in the
low-density range using one of the standard lower density
neutron-star equations of state [9], with the result h0 ≈
1.74067× 10−2. At higher densities the enthalpy can be
determined by integrating Eq. (A1) between table entries
pi and pi+1 using Eq. (A2). These integrals can be done
analytically resulting in a recursion relation for the hi+1

table entries [10]:

hi+1 = hi +
Γi

Γi − 1
log

[

ǫi(ǫi+1 c
2 + pi+1)

ǫi+1(ǫi c2 + pi)

]

. (A4)

Discontinuities are inserted into GM1L for this study
at a point several times nuclear density where the energy
density has the value ǫT = 8 × 1014 g/cm3. The partic-
ular equations of state with discontinuities representing
first- or second-order phase transitions are described in
Secs. A 1 and A2 respectively. These exemplar equations
of state have discontinuities with a range of sizes from
zero to the largest physically relevant phase transition of
each type.

1. First-Order Phase Transitions

An equation of state ǫ = ǫ(p) is said to have a first-
order phase transition at p = pT if ǫ(p) is discontinuous
at that point. Exemplar equations of state with first-
order phase transitions are constructed here by modifying
the GM1L equation of state at densities above ǫT . For
this study the transition density ǫT is chosen to be several
times nuclear density at the point ǫT = 8× 1014 g/cm3.

To ensure the tabulated representations of the exem-
plar equations of state adequately represent the sharp
transitions at the phase transition, points are added to
the table entries at the points ǫ±T = (1 ± 10−6) ǫT,
just above and below the phase transition. The cor-
responding pressure points needed to complete the ta-
ble entries are given by Eq. (A2): p±T = pi (ǫ

±

T/ǫi)
Γi ,

where ǫi < ǫ±T < ǫi+1. Once the GM1L equation of
state table has been updated with these two additional
phase-transition bracketing points, density offsets δǫT
are added to all the table entries with densities above
ǫT . The result is a tabulated model equation of state
with a first-order phase transition.

The neutron-star mass-radius curves produced by
equations of state with first-order phase transitions show
that stars with central densities above ǫT are unstable
whenever the density discontinuity δǫT exceeds a cer-
tain maximum, max(δǫT ) [11]. The masses of these stars
achieve a maximum at the point where the central density
equals ǫT . Stars with larger central densities are subject
to a gravitational instability predicted by general relativ-
ity theory. The family of stable neutron stars therefore
terminates at this point. In some cases there may be
an additional higher density family of stable “hyperon”
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or perhaps “quark” stars.1 Neutron stars with central
pressures in the unstable region above ǫT can never be
observed, so equations of state with density offsets above
max(δǫT ) will not be considered in this study. The ap-
proximate value of this maximum density offset is given
by [11],

max(δǫT ) =
1

3

(

ǫT + 3
pT

c2

)

, (A5)

where pT = pi (ǫT/ǫi)
Γi , and ǫi < ǫT < ǫi+1. The

maximum density offset, max(δǫT ), is fairly large for
the model first-order phase transitions constructed here:
max(δǫT )/ǫT ≈ 0.504634.2

A family of exemplar equations of state with first-
order phase transitions have been constructed for this
study with density offsets δǫT having sizes in the range
0 ≤ δǫT ≤ max(δǫT ). The density offsets used in these
models are given by,

δǫT = σk max(δǫT ), (A6)

where the size of the offsets is determined by

σk =
k

100
, (A7)

for 0 ≤ k ≤ 100. The density offset for each exemplar
equation of state is added to all the table entries that ex-
ceed the transition density ǫT . Figure 1 illustrates some
of these exemplar equations of state in a neighborhood of
the phase transition point. Figure 9 illustrates the mass-
radius curves generated from these exemplar equations
of state with first-order phase transitions.

2. Second-Order Phase Transitions

Second-order phase transitions are points on the equa-
tion of state curve ǫ = ǫ(p) where ǫ(p) is continuous
but dǫ/dp is discontinuous. In this study the deriva-
tives of the GM1L equation of state are modified at and
above the phase transition density ǫT to create a discon-
tinuity that simulates a second-order phase transition.
To do this most efficiently, the basic GM1L equation of
state table is modified by inserting an additional entry at
the point {ǫT , pT }. With this addition the second-order
phase-transition discontinuity in dǫ/dp occurs at one of
the tabulated data points.

1 If the mass-radius curve of these stars has a second inflection
point beyond {ǫT , pT } where the mass has a minimum and the
radius is decreasing, then stability would be restored and a higher
density branch of relativistic stars could exist.

2 The maximum density offset derived by an analytical analysis
in Ref. [11] is 1.5 times the value given in Eq. (A5). Numerical
studies, however, show that the effective maximum offset is close
to the value given in Eq. (A5).
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FIG. 9: Examples of mass-radius curves for equations of state
with first-order phase transitions. The k = 0 curve is based
on the unmodified GM1L equation of state, while the k = 100
curve corresponds to the equation of state with the maximum
density discontinuity defined in Eq. (A5). The k = 150 curve
illustrates an equation of state with a larger density disconti-
nuity which leads to unstable stars beyond the {ǫT , pT } phase
transition point. This k = 150 curve also has a disconnected
branch of stable relativistic stars at higher densities.

The derivative of the equation of state, dǫ/dp, is related
to the speed of sound v in a barotropic fluid by v =
(dǫ/dp)−1/2. Any modifications of dǫ/dp above the phase
transition point must therefore be done in a way that
respects causality. A convenient tool for monitoring the
causality of sound waves in fluids is the dimensionless
velocity function Υ defined by [4]

Υ = c2
dǫ

dp
− 1 =

c2 − v2

v2
. (A8)

The propagation of sound waves is causal if and only if
Υ ≥ 0. The velocity function Υ is determined from the
basic tabulated GM1L equation of state by evaluating
dǫ/dp using the interpolation formula in Eq. (A2) at each
point in the table. The result is given by

Υi =
ǫi c

2

piΓi
− 1. (A9)

For causal equations of state Υ ≥ 0, with Υ = 0 rep-
resenting the extreme case of a fluid with sound speed
equal to the speed of light, v2 = c2.

Discontinuities in the slope of the exemplar equations
of state were introduced for this study by modifying Υ
for densities above the phase transition density, ǫ ≥ ǫT,
while leaving it unchanged for lower densities. In par-
ticular the sound speed was increased by reducing Υ by
multiplying it by the factor 1 − σk in this high density
region, using the σk defined in Eq. (A7). Thus Υ is re-
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placed in this high density region by Υ̃ defined by

Υ̃ = (1− σk)Υ. (A10)

The maximum physically relevant slope discontinuity
at the phase transition point is achieved by setting the
sound speed to the speed of light, v2 = c2 at that point,
i.e. by setting Υ̃ = 0 there. A family of exemplar equa-
tions of state models were constructed for this study that
range from the original undistorted GM1L equation of
state for k = 0, to the extreme equation of state with
Υ̃ = 0 above the transition density for k = 100.

Given Υ̃i evaluated at the points of the basic GM1L
equation of state table, the modified values of ǫi above
the phase transition point, ǫi > ǫT , can be determined
by the recursion relation

ǫi+1 = ǫi exp

[

(1 + Υ̃i)
pi
ǫi c2

log

(

pi+1

pi

)]

. (A11)

This expression follows by solving Eq. (A9) for ǫi+1 which
contributes to the definition of Γi. The pressure points
pi in the equation of state table are not modified. Fig-
ure 2 illustrates a few of these exemplar equations of
state with larger density-derivative discontinuities in a
neighborhood of the second-order phase transition point.
Figure 10 illustrates the mass-radius curves generated
from these exemplar equations of state with second-order
phase transitions.
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FIG. 10: Examples of mass-radius curves for equations of
state with second-order phase transitions. The k = 0 curve is
based on the unmodified GM1L equation of state, while the
k = 100 curve is based on the maximal case where the sound
speed changes discontinuously to the speed of light above the
phase transition.

Appendix B: Causal Parametric Representations

This study uses enthalpy-based representations of the
neutron-star equation of state. These representations de-
termine the energy density ǫ(h, υa) and pressure p(h, υa)
as functions of the enthalpy h and a collection of Nparms

parameters υa for 1 ≤ a ≤ Nparms. To be useful tools for
representing the physical neutron-star equation of state,
these representations must be faithful and they must
be causal. Faithful representations have the property
that every choice of parameters, υa, represents a possi-
ble physical equation of state. Conversely every physical
equation of state can be represented by some choice, in-
cluding perhaps an infinite sequence, of parameters [3].
Faithful parametric representations must be convergent
as the number of parameters is increased. Causal repre-
sentations have the property that every choice of param-
eters generates an equation of state with sound speeds
less than or equal to the speed of light [4].
An equation of state has causal sound speeds if and

only if the velocity function Υ, defined in Eq. (A8), is
non-negative: Υ ≥ 0. This velocity function can be used
as a generating function that determines the full equation
of state, so it is a very useful tool for constructing causal
parametric representations. The velocity function can be
written as a function of the enthalpy:

Υ(h) = c2
dǫ

dp
− 1 = c2

dǫ

dh

[

ǫ(h) c2 + p(h)
]−1

− 1. (B1)

Given a velocity function, Υ(h), the full equation of state
can be reconstructed by solving the following ordinary
differential equations for ǫ(h) and p(h),

dp

dh
= ǫ c2 + p. (B2)

dǫ

dh
=

(

ǫ+
p

c2

)

[Υ(h) + 1] , (B3)

The first, Eq. (B2), follows from the definition of the
enthalpy in Eq. (A1), while the second, Eq. (B3), follows
from the definition of Υ(h) in Eq. (B1). These equations
can be reduced to quadratures:

p(h) = p0 + (ǫ0 c
2 + p0)

∫ h

h0

µ(h′) dh′, (B4)

ǫ(h) = −p(h) +
(

ǫ0 +
p0
c2

)

µ(h), (B5)

where p0 = p(h0) and ǫ0 = ǫ(h0) represent a point on the
equation of state curve, and µ(h) is given by

µ(h) = exp

{

∫ h

h0

[2 + Υ(h′)] dh′

}

. (B6)

Equations (B4)–(B6) determine a causal enthalpy-based
equation of state generated by any non-negative velocity
function Υ(h) ≥ 0.
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In this study two different types of parametric repre-
sentations are used. The first type, piecewise-analytic
representations, break the relevant domain of enthalpies
into Nparms subdomains, and then expresses ǫ(h, υa)
and p(h, υa) in each subdomain as a particular analytic
function determined by the parameters. The particular
causal piecewise analytic representations used here are
described in Sec. B 1. The second type of parametric
representation used in this study is a spectral represen-
tation that constructs ǫ(h, υa) and p(h, υa) from a gen-
erating function determined by a linear combination of
spectral basis functions. The particular causal spectral
representation used here is described in Sec. B 2.

1. Causal Piecewise-Analytic Representations

The first step in constructing the causal piecewise-
analytic enthalpy-based representations used in this
study is to divide the enthalpy domain relevant for the
high density portion of a neutron-star core, [hmin, hmax],
into Nparms subdomains with hmin = h0 < h1 < ... <
hn−1 < hNparms

= hmax. The representation used in this
study makes the subdomains uniformly spaced in log h:
log(ha+1/ha) = N−1

parms log(hmin/hmax) for all 1 ≤ a ≤
Nparms.
The second step is to choose analytical functions

Υ(h, υa) to approximate Υ(h) in each subdomain. The
challenge is to find analytical functions that are reason-
ably good approximations in each subdomain, and that
are simple enough to allow Eqs. (B4) and (B5) to be
solved analytically for ǫ(h, υa) and p(h, υa). Graphs in
Ref. [4] show that logΥ is more or less proportional to
log h for a collection of model neutron-star equations of
state. This fact, together with the need to have simple
functions that can be integrated analytically, lead to the
following choice for Υ(h, υa) [4],

Υ(h, υa) =
υa + 2(ha − h)

h
, (B7)

in the subdomain ha−1 ≤ h < ha. These velocity func-
tions are non-negative within each subdomain so long as
the adjustable parameters are chosen to be non-negative,
υa ≥ 0.
The piecewise-analytic representation of the equation

of state, ǫ(h, υa) and p(h, υa), that corresponds to the
Υ(h, υa) given in Eq. (B7) is determined by evaluating
the integrals in Eqs. (B4)–(B6). Inserting the expression
for Υ(h, υa) from Eq. (B7) into these integrals gives the
following expressions for the equation of state,

p(h, υa) = pa +

(

ǫa c
2 + pa

)

ha

λa + 1

[

(

h

ha

)λa+1

− 1

]

,

(B8)

ǫ(h, υa) = −p(h, υa)c
−2 +

(

ǫa + pac
−2

)

(

h

ha

)λa

, (B9)

in the subdomain ha ≤ h < ha+1, where

λa = υa+1 + 2ha+1. (B10)

The constants pa = p(ha, υa) and ǫa = ǫ(ha, υa) are de-
termined from the recursion relations,

pa+1 = pa +

(

ǫa c
2 + pa

)

ha

λa + 1

[

(

ha+1

ha

)λa+1

− 1

]

,

(B11)

ǫa+1 = −pa+1c
−2 +

(

ǫa + pac
−2

)

(

ha+1

ha

)λa

. (B12)

The constants p0 = p(h0) ≥ 0 and ǫ0 = ǫ(h0) ≥ 0 are
determined from the low-density equation of state at the
matching point h = h0..

2. Causal Spectral Representations

Spectral methods are very efficient ways to represent
smooth functions, providing good accuracy with only a
small number of spectral basis functions. This study is
designed to test how well spectral representations are able
to represent non-smooth functions, i.e. equations of state
with phase transitions. Causal spectral representations
are generated by a spectral expansions of the velocity
function Υ(h):

Υ(h) = exp







Nparms
∑

a=1

υaΦa(h)







, (B13)

where Φa(h) are a suitable set of spectral basis functions
and the constants υa are the spectral coefficients. Insert-
ing this expression for Υ(h) into Eqs. (B4)–(B6) produces
a causal equation of state determined by the parameters
υa. Any equation of state constructed in this way auto-
matically produces a velocity function Υ(h) that satisfies
the causality condition Υ(h) ≥ 0.
This study uses the very simple choice of spectral ba-

sis functions Φa(h) = [log(h/h0)]
a
, which creates a col-

lection of velocity functions, Υ(h, υa), parameterized by
υa [5]:

Υ(h, υa) = Υ0 exp







Nparms
∑

a=1

υa

[

log

(

h

h0

)]a






. (B14)

The constant Υ0 = Υ(h0) in this expression is eval-
uated from the low-density portion of the equation of
state at the point h0 using Eq. (A9). Every choice
of spectral parameters υa in Eq. (B14) determines a
non-negative velocity function, and using Eqs. (B4) and
(B5) this generating function determines a parameterized
enthalpy-based causal equation of state, ǫ = ǫ(h, υa) and
p = p(h, υa). These integrals can not be done analyti-
cally, however, the integrands are smooth and they can
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be evaluated numerically very accurately and efficiently
using Gaussian quadrature. If the spectral expansion in
Eq. (B13) is convergent, then every causal equation of
state can be represented in this way by including enough
terms in the spectral expansion, i.e. by choosing Nparms

sufficiently large. However as this study shows, the spec-
tral representations of equations of state with large phase
transitions are not convergent for representations based
on the particular spectral expansion in Eq. (B14).
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